期货对冲策略--潘登同学的期权、期货及其他衍生品学习笔记
多头对冲与空头对冲
多头期货对冲(Long Futures Hedge)
- 持有期货多头头寸(Take a long position in futures)
- 将在未来购入某项资产,并希望锁定其价格(When you know you will be buying an asset in the future and want to lock in its price)
空头期货对冲(Short Futures Hedge)
- 持有期货空头(Take a short position in futures)
- 将在未来出售某项资产,并希望锁定其价格(When knowing that an asset will be sold in the future and want to lock in its price)
基差风险
- 基差通常指的是现货价格与期货价格之差(Basis usually refers to the difference between the spot price and the futures price)
- 产生原因:
- 实际需要对冲资产与期货标的资产的差异(The difference between the actual hedging asset and the underlying asset of the futures)
- 买入卖出时间的不确定(Uncertainty about when to buy and sell)
- 期货合约到期前需要平仓(The futures contract needs to be closed before it expires)
多头对冲 – 资产购买(Long Hedging - Asset Purchase)
符号 | 定义 | 英文 | 计算 |
---|---|---|---|
$F_1$ | 设置对冲保值时的期货价格 | Set the futures price when hedging | |
$F_2$ | 购买资产时的期货价格 | Future price at the time of asset purchase | |
$S_1$ | 设置对冲保值时的资产价格 | Set the asset price when hedging | |
$S_2$ | 购买资产时的资产价格 | Asset price at the time of asset purchase | |
$b_1$ | 设置对冲保值时的基差 | Set the basis for hedging | $b_1 = S_1 - F_1$ |
$b_2$ | 购买资产时的基差 | Basis when buying assets | $b_2 = S_2 - F_2$ |
期货收益 | Futures returns | $F_2 - F_1$ | |
支付净额 | Net payment | $S_2 - (F_2-F_1)=b_2+F_1$ |
空头对冲 – 资产出售(Short Hedging - Asset Sale)
符号 | 定义 | 英文 | 计算 |
---|---|---|---|
$F_1$ | 设置对冲保值时的期货价格 | Set the futures price when hedging | |
$F_2$ | 出售资产时的期货价格 | The futures price when the asset was sold | |
$S_1$ | 设置对冲保值时的资产价格 | Set the asset price when hedging | |
$S_2$ | 出售资产时的资产价格 | The asset price when the asset is sold | |
$b_1$ | 设置对冲保值时的基差 | Set the basis for hedging | $b_1 = S_1 - F_1$ |
$b_2$ | 出售资产时的基差 | Basis when selling assets | $b_2 = S_2 - F_2$ |
期货收益 | Futures returns | $F_2 - F_1$ | |
收入净额 | Net income | $S_2 + (F_2-F_1)=b_2+F_1$ |
合约的选择(contract selection)
- 标的资产(underlying asset)
- 交叉对冲(Cross hedge)
- 当被对冲保值的资产没有期货合约时,选择期货价格与资产价格相关性最高的合约(When there is no futures contract for the asset to be hedged, choose the contract with the highest correlation between the futures price and the asset price)
- 对冲比率(Hedge Ratio)
- 持有期货合约的头寸数量与资产风险敞口数量的比率(The ratio of the number of positions holding futures contracts to the number of asset exposures)
- 交叉对冲(Cross hedge)
- 交割月份(Delivery month)
- 尽可能接近(但晚于)对冲周期结束(As close as possible to (but later than) the end of the hedging period)
- 时间越早,基差风险越大(The earlier the time, the greater the basis risk)
最优对冲比率(Optimal hedge ratio)
一单位的现货需要多少单位的期货,才能对冲风险
- 对冲目的: 使被对冲后头寸价格变化的方差达到最小(Minimize the variance of the price change of the hedged position)
本质上看,就是h单位的期货变化要等于一单位的现货变化,那么最小化$(S-h^F)^2$,其实就是估计方程 $$ S = h F $$ 的结果,根据最小二乘法,$h^=\frac{Cov(F,S)}{\sigma_F^2}=\frac{Cov(F,S)}{\sigma_S\sigma_F}\frac{\sigma_S}{\sigma_F}=\rho\frac{\sigma_S}{\sigma_F}$.
- 正式推导
假设现在有一单位的现货等待对冲,则可知道需要 h 单位的期货。首先给出空头对冲价格的变化,该变化是一个随机变量,这个变化直观理解就是对冲者在期货和现货市场上所持有资产总价的变动,这个总价的变动方式决定了规避风险成功与否,用 $\triangle V$表示。 $$ \triangle V = \triangle S - h \times F $$
我们可以得知由于对于未来的不确定性该式子中$\triangle V ,\triangle S,\triangle F$都是随机变量,而其概率分布并不明确。将上式取方差 $$ D(\triangle V) = D(\triangle S - h \times F) = D(\triangle S) + h^2D(\triangle F) - 2Cov(\triangle S,h\triangle F)=\sigma^2_s+h^2\sigma_F^2-2h\rho\sigma_S\sigma_F $$
由样本方差的估计 $\hat{\sigma}^2=\frac{1}{n-1}\sum(X_i-\bar{X})^2$,可以估计出 $\hat{\sigma_P}^2 ,\hat{\sigma_S}^2,\hat{\rho}0$,由大数定律等可以认为这些估计量是无偏的。这样我们就将他们代回到$\sigma^2_s+h^2\sigma_F^2-2h\rho\sigma_S\sigma_F$中,得到 $\sigma_P^2 = \hat{\sigma}^2_s+h^2\hat{\sigma}_F^2-2h\hat{\rho}\hat{\sigma}_S\hat{\sigma}_F$,将 $\sigma^2_P$对 $h$求偏导,令其等于0,即可求出极值点 $h = \hat{\rho}\frac{\hat{\sigma}_S}{\hat{\sigma}_F}$,由于此处的二阶导大于零,故可知该极值点是极小值点。所以可以知道$h$的最优对冲比率的值。
对冲效率(Hedge Effectiveness)
- 对冲所消除的方差量占总方差的比例(The amount of variance eliminated by hedging as a proportion of the total variance) $$ R^2_{\triangle S - \triangle F} = \rho^2 $$
最优合约数量(Optimal Number of Contracts) $$ N^* = h^*\frac{Q_A}{Q_F} $$
- $Q_A$是被对冲头寸的规模($Q_A$ is the size of the hedged position)
- $Q_F$是一份期货合约的规模($Q_F$ is the size of a futures contract)
航空公司的期货对冲(Airline company)
某航空公司将在一个月内购买 2,000,000 加仑航空石油,同时使用取暖原油期货进行对冲(An airline will purchase 2,000,000 gallons of aviation oil in one month while hedging with heating crude oil futures) 该航空公司购买取暖原油期货的最优合约数量是多少?(What is the optimal number of contracts for the airline to purchase heating oil futures?)
符号 | 定义 | 英文 | 计算 |
---|---|---|---|
$V_F$ | 是一份期货合约的价值 | the value of a futures contract | 42,000 |
$V_A$ | 是头寸价值 | the position value | 2,000,000 |
${\hat{\sigma}_S}$ | 是现货价格的每日百分比变化的标准差 | the standard deviation of the daily percent change in the spot price | 0.0263 |
${\hat{\sigma}_F}$ | 是期货价格的每日百分比变化的标准差 | the standard deviation of the daily percentage change in the futures price | 0.0313 |
$\hat{\rho}$ | 是现货价格与期货价格的每日百分比变化的相关系数 | the correlation coefficient of the daily percentage change of the spot price to the futures price | 0.928 |
$$ 日内 (或某段时间内)对冲的最优合约数量为:N^* = \hat{h}\frac{V_A}{V_F}=37.13 \ 其中:\hat{h} = \hat{\rho}\frac{\hat{\sigma}_S}{\hat{\sigma}_F} $$
利用股指期货进行对冲(Hedging with stock index futures)
- 股指(Stock Index)
- 跟踪一个虚拟股票组合的价值变化,每个股票在组合中权重等于股票组合投资该股票的比例(Tracks the change in value of a virtual stock portfolio, where each stock is weighted in the portfolio equal to the proportion of the stock portfolio invested in that stock)
为了对冲投资组合的风险,做空合约数量应为(In order to hedge the risk of the investment portfolio, the number of short contracts should be) $$ N^* = \beta \frac{V_A}{V_F} $$
符号 | 定义 | 英文 | 计算 |
---|---|---|---|
$V_F$ | 每份S&P 500指数期货的规模是\$250乘以股指期货价格 | The size of each S&P 500 index future is \$250 times the stock index futures price | 250*1,010 |
$V_A$ | 投资组合的价值 | portfolio value | 5,050,000 |
${\hat{\beta}}$ | 该投资组合的beta系数 | The beta of the portfolio | 1.5 |
$P_m$ | 标普500指数 | S&P 500 index | 1,000 |
$$ 日内 (或某段时间内)对冲的最优合约数量为:N^* = \beta\frac{V_A}{V_F}=30 \ $$
假设3个月后,S&P 500 index =900,S&P 500 futures price = 902,S&P 500年化股息收益率是1%,年化无风险利率$R_f= 4\%$。3个月后,对冲者头寸价值是多少?
- 做空期货的收益为 $$ 30(1010-902)250 = 810,000 $$
- 股指的亏损为10\%,加上股指0.25\%的股息收益率(3个月),因此股指在3个月里的收益为-9.75\%, 根据CAPM,计算组合期望收益率 $$ 1\% + 1.5*(-9.75\%-1\%) = -15.125\% $$
- 组合3个月后的价值为 $$ 5,050,000*(1-15.125\%) = 4,286,187 $$
- 加上做空收益,对冲者头寸价值为 $$ 4,286,187 + 810,000 = 5,096,187 $$
对冲股权投资组合的原因
- 规避市场整体风险,收获超额回报 (Abnormal Return)(Avoid overall market risk and reap excess returns)
- 假设投资组合中的股票的平均beta系数为 1.0,但你相信它们无论市场好坏都将跑赢市场(Suppose the stocks in your portfolio have an average beta of 1.0, but you believe they will outperform the market in good times and bad)。对冲能够确保回报是无风险回报加上投资组合相对于市场的超额回报(Hedging ensures that the return is the risk-free return plus the excess return of the portfolio relative to the market)
- 退出市场一段时间(out of the market for a while)
- 套期保值避免了出售和回购投资组合的成本 (Transaction Cost)(Hedging avoids the cost of selling and buying back the portfolio)
尾随对冲(Tailing the hedge)
因每日结算,进而对$N^∗$做的更新改进(Updates and improvements made to 𝑁∗ due to daily settlement).需要将$N^∗$除以 1 加上对冲剩余期限内将获得的利息(收益率)(Need to divide N∗ by 1 plus the interest (yield) that will be earned during the remaining period of the hedge)
向前滚动对冲(Stack and Roll)
假设在2017年4月,一家公司意识到在 2018 年6月将卖出100000 桶原油,并决定按1.0的对冲比率来对冲风险。我们只假设有最近6个月的合约具有足以满足公司要求的流动性。因此公司承约了 100 份2017 年10月合约的空头。在2017 年9月,将对冲向前滚动到2018年3月的合约。在2018年2月,将对冲向前滚动到2018年7月的合约。
日期 | 2017-04 | 2017-09 | 2018-02 | 2018-06 |
---|---|---|---|---|
2017-10期货价格 | 48.20 | 47.40 | ||
2018-03期货价格 | 47.00 | 46.50 | ||
2018-07期货价格 | 46.30 | 45.90 | ||
即期价格 | 49.00 | 46.00 |
持有期货空头收益 $$ (48.20-47.40) + (47.00-46.50) + (46.30-45.00) = 1.7 $$
现货市场损失 $$ 49.00-46.00 = 3 $$
流动性问题(Illiquidity issue)
任何对冲情况下,都存在对冲出现损失而相关风险敞口未实现收益的可能(In any hedging situation, there is the potential for a loss on the hedge and an unrealized gain on the associated exposure)
德国金属公司 (Metallgesellschaft) 曾按这种方式对冲自己由于提供固定价格商品而带来的风险。在商品价格下跌时,公司运作产生困难,原因是承约短期期货所带来的损失要立即支付保证金,而所期望的长期收益却无法马上实现。被对冲产品所产生的收益和对冲产品所带来损失的时间不匹配,因此给公司带来了无法克服的流动性困难。