总体方差区间估计推导

作者: pdnbplus | 发布时间: 2024/07/14 | 阅读量: 174

总体方差区间估计推导 -- 潘登同学的数理统计笔记

来源

在做总体方差的区间估计的时候遇到了,对于来自正态总体的样本容量为n的简单随机样本,统计量服从卡方分布
(n1)s2σ2χ2(n1)\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)
老师上课讲了相关推导,感觉比网上用什么正交矩阵推导的简单自然,做下记录

推导

由恒等式开始

(n1)Sn2=(n2)Sn12+n1n(xnxˉn1)2(n-1)S^2_n = (n-2)S^2_{n-1} + \frac{n-1}{n}(x_n-\bar{x}_{n-1})^2

证明:
左边=(n1)Sn2=i=1n(xixˉn)2=i=1n1(xixˉn1+xˉn1xˉn)2+(xnxˉn)2=i=1n1(xixˉn1)2+2i=1n1(xixˉn1)(xˉn1xˉn)+i=1n1(xˉn1xˉn)2+(xnxˉn)2=i=1n1(xixˉn1)2+i=1n1(xˉn1xˉn)2+(xnxˉn)2=(n2)sn12+(n1)(xˉn1xˉn)2+(xnxˉn)2=(n2)sn12+n1n2(xˉn1xn)2+(n1n)2(xnxˉn1)2=(n2)sn12+n1n(xˉn1xn)2=右边\begin{aligned} 左边 &= (n-1)S^2_n = \sum_{i=1}^n(x_i-\bar{x}_n)^2 \\ &= \sum_{i=1}^{n-1}(x_i-\bar{x}_{n-1}+\bar{x}_{n-1}-\bar{x}_n)^2 + (x_n - \bar{x}_n)^2 \\ &= \sum_{i=1}^{n-1}(x_i-\bar{x}_{n-1})^2 +2\sum_{i=1}^{n-1}(x_i-\bar{x}_{n-1})(\bar{x}_{n-1}-\bar{x}_n) + \sum_{i=1}^{n-1}(\bar{x}_{n-1}-\bar{x}_n)^2 + (x_n - \bar{x}_n)^2 \\ &= \sum_{i=1}^{n-1}(x_i-\bar{x}_{n-1})^2 + \sum_{i=1}^{n-1}(\bar{x}_{n-1}-\bar{x}_n)^2 + (x_n - \bar{x}_n)^2 \\ &= (n-2)s_{n-1}^2 + {(n-1)}(\bar{x}_{n-1}-\bar{x}_n)^2 + (x_n - \bar{x}_n)^2 \\ &= (n-2)s_{n-1}^2 + \frac{n-1}{n^2}(\bar{x}_{n-1}-{x}_n)^2 + (\frac{n-1}{n})^2(x_n-\bar{x}_{n-1})^2 \\ &= (n-2)s_{n-1}^2 + \frac{n-1}{n}(\bar{x}_{n-1}-{x}_n)^2 = 右边 \end{aligned}

数学归纳法

假设
(n1)s2σ2χ2(n1)\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)

当n=2时
s22=(x1xˉ2)2+(x2xˉ2)221=(x2x1)22s_2^2 = \frac{(x_1-\bar{x}_2)^2 + (x_2-\bar{x}_2)^2}{2-1} = \frac{(x_2-x_1)^2}{2}
根据正态分布可加性
(x2x1)N(0,2σ2)(x_2-x_1) \sim N(0,2\sigma^2)
根据χ\chi定义,是标准正态的平方和
(21)s22σ2=(x2x12σ)2χ2(1)\frac{(2-1)s_2^2}{\sigma^2} = (\frac{x_2-x_1}{\sqrt{2}\sigma})^2 \sim \chi^2(1)

当n=k时,假设
(k1)s2σ2χ2(k1)\frac{(k-1)s^2}{\sigma^2} \sim \chi^2(k-1)

当n=k+1时
ksk+12σ2=(k1)sk2+kk+1(xk+1xˉk)2σ2=(k1)sk2σ2+(xk+1xˉk)2k+1kσ2\begin{aligned} \frac{ks_{k+1}^2}{\sigma^2} &= \frac{(k-1)s_k^2 +\frac{k}{k+1}(x_{k+1}-\bar{x}_k)^2}{\sigma^2} \\ &= \frac{(k-1)s_k^2}{\sigma^2} + \frac{(x_{k+1}-\bar{x}_k)^2}{\frac{k+1}{k}\sigma^2} \end{aligned}
根据抽样分布
xˉkN(0,σ2k)\bar{x}_k \sim N(0,\frac{\sigma^2}{k})
根据正态分布可加性
xk+1xˉkN(0,k+1kσ2)x_{k+1}-\bar{x}_k \sim N(0,\frac{k+1}{k}\sigma^2)
(xk+1xˉk)2k+1kσ2=(xk+1xˉkk+1kσ)2χ2(1)\frac{(x_{k+1}-\bar{x}_k)^2}{\frac{k+1}{k}\sigma^2} = (\frac{x_{k+1}-\bar{x}_k}{\sqrt{\frac{k+1}{k}}\sigma})^2 \sim \chi^2(1)
而前面部分根据归纳假设
(k1)sk2σ2χ2(k1)\frac{(k-1)s_k^2}{\sigma^2} \sim \chi^2(k-1)
根据卡方分布定义
ksk+12σ2χ2(k1)+χ2(1)χ2(k)\frac{ks_{k+1}^2}{\sigma^2} \sim \chi^2(k-1) + \chi^2(1) \sim \chi^2(k)

回到方差估计上

正是因为
(n1)s2σ2χ2(n1)\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)
我们就能用卡方分布去估计总体方差σ\sigma

在给定置信度1α1-\alpha
P(χ1α22(n1)s2σ2χα22)=1αP(\chi^2_{1-\frac{\alpha}{2}}\leq\frac{(n-1)s^2}{\sigma^2}\leq\chi^2_{\frac{\alpha}{2}}) = 1-\alpha
σ\sigma调整到不等式中间
P((n1)s2χα22σ2(n1)s2χ1α22)=1αP(\frac{(n-1)s^2}{\chi^2_{\frac{\alpha}{2}}}\leq\sigma^2\leq\frac{(n-1)s^2}{\chi^2_{1-\frac{\alpha}{2}}}) = 1-\alpha
不等式作用两端的就是估计区间了...